

Trash in Creeks

A Field Survey of Volume and Source Types in Austin, Texas, USA

Andrew Clamann, Mateo Scoggins SUSE6/SFS, 2023

Objective: accountability pie chart

Overflowing dumpsters? Illegal dumping? Parks? Encampments? Historic landfills? Property management? Population density? Apartments? Businesses? Roadways? Residential? High impervious cover?

Adjust strategies for maximum effectiveness!

- Winter survey (leaf off, storms unlikely)
- Observation points every 9 meters for selected network
- Width = lower floodplain bench ($\sim 10yr$ storm event)

Visual Trash Intensity Rubric for Creek Walk

- 1) Score is recorded at the center of a 30ft creek segment (15ft upstream and 15ft downstream of pbint)
- 2) Survey area extends outward to the high bank (perceived floodplain) visible from the channel banks, to include areas that trash will imminently reach the stream in a storm event even if above high bank
- Accumulations of dead vegetation will not be considered trash, however if contained in bags, the bags will be considered trash (presume the bag is separated from leaves). Same with sandbags.
- 4) Immobile abandoned infrastructure (e.g., pipelines in channel, large blocks of concrete) will not be considered trash if infeasible (without heavy equipment) to remove/cleanup by hand), however, portions that could be easily cut off with hand tools (exposed rebar, cables, etc.) and removed will be considered trash. Small construction debris (bricks, cinderblocks, asphalt etc.) that can mobilize during storm events are considered trash. Materials that are in-place but failing are not considered trash (fence sagging, erosion matting dangling, etc.), but can be considered trash if no longer in-place and mobile

	jug	bucket	park can	bin				
(no <u>trash)</u> 1/4 1/2 3/4 full fulltlarge, 1/4 1/2 3/4 full fulltlarge, 1/4 1/2 3/4 full fulltlarge, 2/3 3/4 full fullt >2bins								
Minimal		Apparent	Abundant	Dense				
0	1 2 3 4 5	6 7 8 9 10	11 12 13 14 15	16 17 18 19 20				
No litter	Description: "good"	Description: "not bad"	Description: "bad"	Description: "horrible"				
observed	Few items here or there	Trash is noticeable but	Site has obvious and	Trash defines the site				
within	but not very noticeable.	doesn't define the site	salient accumulation.	and offends the visitor.				
survey	If noticeable, few	Volume:	"Trashy" is forefront	Desire for cleanup is				
area	Volume:	The cumulative amount Volume:		overwhelming				
	The cumulative amount	could easily fit within a 5- The cumulative amount		Volume:				
	could easily fit within a	gallon bucket, however, could easily fit within		The cumulative amount				
	1-gallon milk jug,	a single item that is	25-gallon park trash	requires the big 55-				
	however, a single item	larger than a bucket (but can, however, a s		gallon bin(s)				
	that is larger than a milk	still fits in a 25-gallon	item that is larger can	Effort:				
	jug (but still fits in a 5-	can) can still be in this	still be in this category	Site would take a long				
	gal bucket) can still be	category	Effort:	time for one person,				
	in this category	Effort:	Site looks like a two-	(~30+ minutes) but site				
	Effort:	Site could easily be	person job but could be	is better suited for a				
	Site could be easily and	cleaned by one person	cleaned by one person	team				
	quickly cleaned by one	but not quickly	(~15-30 minutes)					
	person (<5 minutes)	(~5-15 minutes)						

Each observation reach:

Trash intensity score 0-20

- one of four descriptive bins
- based on perceived volume and level of effort

Sources (presence/absence):

- Overflowing dumpster
- Outfall/tributary
- Encampment
- Property management
- Dumping, historic
- Dumping, point source
- Dumping, unknown

Result: Map of intensity matched with sources

intensity

sources

Geospatial: 300' and 3000' buffers

- Central city creeks (277 km!)
- 20 Watersheds
- Data point every 9 meters
- <u>19,467</u> data points!

Takeaway #1 No consistent Upstream-to-downstream pattern

8 creeks increased in trash downstream6 creeks decreased in trash downstream6 creeks no discernable trend

Why doesn't upstream/downstream comparison work? Trash doesn't move through the system evenly

storm intensity

stream roughness

item mobility

Encampment was the most <u>commonly-observed</u> source,

but was similar in intensity and range to most other sources

Takeaway # 3

No correlations between trash intensity and:

- Imp cover,
- Land use,
- population,
- parks,
- roads, etc.

Indonendent Veriable	3,000 ft reach length		300 ft reach length	
Independent variable	\mathbb{R}^2	p-value	R ²	p-value
Single Family Landuse	0.026	0.03	0.011	0.0000015
Multifamily Landuse	0.029	0.46	0.011	0.0000034
Commercial Landuse	0.015	0.09	0.011	0.0000013
Parks <u>Landuse</u>	0.007	0.25	0.002	0.029
Undeveloped <u>Landuse</u>	0.008	0.23	0.004	0.0031
Impervious Cover	0.006	0.29	0.003	0.022
2020 Population	0.012	0.13	0.008	0.000061
Road area (%)	0.0003	0.94	0.002	0.065

Takeaway # 4

Virtually anything can be found in creeks, but

single use plastics were the most common item

clothing, tents, bedding recreation items, toys erosion matting, silt fences packaging, shipping office, household lawn tools, mulch bags, garden hoses, appliances medical, electronics, textiles, hardware

traffic cones, barriers, safety construction materials, asphalt, lumber

Telecommunication cables, displaced infrastructure

>500 shopping carts!

Takeaway # 5 76% of the trash is found in 10% of the area

This presents an opportunity for strategic site selection for cleanups by City and partners

Bottom Line

Trash in creeks comes from the <u>entire community</u>; no scapegoats (and no source pie chart).

Opportunities that may work in Austin

- Shopping cart retention (low-hanging fruit)
- limiting polystyrene container use/sales
- Improve rules/enforcement for dumpster capacity/containment (especially apartments, food trailer courts, etc)
- Improve enforcement: strengthen and diversify penalties
- Retrofit SCMs to better retain floatables
- Review/improve street sweeping effectiveness

Questions?

/www.austintexas.gov/watershed_protection/publications/document.cfm?id=401607

www.austintexas.gov/watershed_protection/publications/document.cfm?id=401606

Typical pollutant loading assessment:

