6th Symposium on Urbanization and Stream Ecology

Low-cost turbidity sensors to understand suspended sediment dynamics in complex landscapes

Supervisors - Australia:
Dr. Kathryn Russell
Prof. Dr. Tim Fletcher

Supervisors - France:
Prof. Dr. Frédéric Cherqui
Prof. Dr. Oldrich Navratil
Prof. Dr. Etienne Cossart

M.Sc. Paulo Vitor R. M. da Silva
01/06/2023
Motivation

Conceptual sediment yield curve

Russell et al. (2017)

United Nations et al. (2019)
Stages of Urban Development

Russell, K. (2021)
Sampling

- Time-consuming
- High costs
- Low temporal and spatial resolution

Turbidity sensors

Commercial turbidity sensors

- High costs
- Low spatial resolution
- Hard to integrate with other sensors within the station

Low-cost turbidity sensors

- High spatial and temporal resolution
- Open-source
- Easy to integrate with other sensors within the station
- Real-time data
Mobile Turbidity Sensor Unit

- Pump
- Water Level sensor
- Turbidity and Temperature sensors
- Batteries
- Switch
- Arduino Board
- Light Source
- Sample
- Light Detector

Light attenuation method
Laboratory Experiments

✓ Results

\[\text{Turbidity} = 44228.22 \times \text{Voltage}^{-0.2} - 4.02 \times \text{Temp} - 8376.82 \]

\[R^2 = 0.9986 \]

<table>
<thead>
<tr>
<th>Sample</th>
<th>Turbidity (FNU)</th>
<th>YSI Probe</th>
<th>Median</th>
<th># of measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>R.O. Water</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1257</td>
</tr>
<tr>
<td>Sample 1</td>
<td>46</td>
<td>46</td>
<td>48</td>
<td>1231</td>
</tr>
<tr>
<td>Sample 2</td>
<td>94</td>
<td>94</td>
<td>106</td>
<td>1740</td>
</tr>
<tr>
<td>Sample 3</td>
<td>140</td>
<td>140</td>
<td>163</td>
<td>1658</td>
</tr>
<tr>
<td>Sample 4</td>
<td>194</td>
<td>194</td>
<td>178</td>
<td>1227</td>
</tr>
<tr>
<td>Sample 5</td>
<td>330</td>
<td>330</td>
<td>306</td>
<td>2531</td>
</tr>
<tr>
<td>Sample 7</td>
<td>817</td>
<td>817</td>
<td>689</td>
<td>938</td>
</tr>
<tr>
<td>Sample 8</td>
<td>1263</td>
<td>1263</td>
<td>1255</td>
<td>903</td>
</tr>
<tr>
<td>Sample 9</td>
<td>1392</td>
<td>1392</td>
<td>1384</td>
<td>919</td>
</tr>
<tr>
<td>Sample 10</td>
<td>1825</td>
<td>1825</td>
<td>1893</td>
<td>1764</td>
</tr>
<tr>
<td>Sample 11</td>
<td>2133</td>
<td>2133</td>
<td>2169</td>
<td>1022</td>
</tr>
<tr>
<td>Sample 12</td>
<td>3167</td>
<td>3167</td>
<td>3157</td>
<td>1109</td>
</tr>
<tr>
<td>Sample 13</td>
<td>3617</td>
<td>3617</td>
<td>3588</td>
<td>1185</td>
</tr>
</tbody>
</table>
Lab Experiment - Calibration
Conclusions and Expectations

- Powerful monitoring tool;
- Continuous monitoring of Turbidity and Suspended Solids Concentration (SSC);
- High turbidity range (0 – 4000 FNU) / SSC (0 – 10 g/L);
- Temperature compensation and control of ambient light;
- Improvement of spatial and temporal resolution of data;
- Allows a better understanding of the main sources of suspended sediments and their spatial and temporal variability in peri-urban catchments.
Acknowledgments

Thank you!

Laboratory Experiment and Fieldwork:
- Axel Baylon
- Robert James
- Peter Poelsma

pribeiomarq@student.unimelb.edu.au