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Motivation: We needed channel dimension data across the Greater Melbourne region to better understand

drivers of physical form and channel enlargement, and to provide input data to other analyses of water

qguality and ecosystem condition. We have lidar data across the region which is a rich source of channel

morphology information, but we needed efficient workflows to extract that information on a regional scale.

Our approach: We developed, tested and compared three automated methods for delineating bankfull

channel boundaries based on lidar digital elevation models (DEMs).

Main findings: All methods performed well in comparison to an expert geomorphologist, but different

methods had different strengths. Methods which used cross-sectional data were more accurate overall, but

the method which used Al to directly classify the channel from a lidar tile was more accurate in complex

channels with inset floodplains.

Implications: We can now efficiently extract information about channel size and shape such as width, depth
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Performance metrics

We compared the results to bankfull delineation
undertaken manually by a geomorphologist.
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Results
Slope-threshold function and HydXS

Slope-threshold method had a tendency to overpredict.
HydXS was more balanced and performed slightly better
overall.
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Slope-threshold HydXS

Precision 0.75 0.87
Recall 0.88 0.80
Dice 0.81 0.83

Convolutional Neural Network (CNN)
Variable performance with different input layers (e.g. slope,

hillshade, elevation, openness)
Best performance with elevation layer only (Dice > 0.8)
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Comparison - HydXS vs CNN
HydXS performed better in smaller channels.
CNN performed better in larger, incised and inset channels.
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