A method of rapid environmental sample preparation for real time PCR detection and quantification of HF183
Vincent Pham, Thomas Hamner, Ammar Abed, Maryam Ajose, Morgan Owens, Eliza Withers. Contact: vincent.pham@utexas.edu
Faculty Advisors: Dr. Stuart Reichler and Dr. Timothy Riedel
Urban Ecosystems Research Stream, Texas Institute for Discovery Education in Science (TIDES), The University of Texas at Austin.

Introduction
• Measuring fecal indicator bacteria (FIB) is a major component of water quality monitoring
• Molecular based methods provide specific identification of species source of different FIBs
• Current standard for detecting human associated FIBs is the HF183 TaqMan quantitative polymerase chain reaction (qPCR) assay
 • DNA extraction is expensive, requires highly trained technicians, and time intensive
• Goal: Design a method that is more cost effective, simpler, faster, and higher throughput for performing DNA extractions from environmental freshwater samples

Current Method
Based on EPA Method 1696 (March 2019)

Collect Water Sample → Filter onto membrane to concentrate → Extract DNA using Qiagen DNeasy Kit → Run qPCR on sample with HF183 primers and probe

New Method

Collect Water Sample → Filter onto membrane to concentrate → Suspend filter in 500µL AE Buffer (10 mM Tris-Cl, 0.5 mM EDTA; pH 9.0) → Heat solution at 95°C for 10 minutes then lightly vortex → Centrifuge at 12,000 x g for two minutes → Supernatant is template for qPCR

Results

Yield Across Extraction Methods

<table>
<thead>
<tr>
<th>DNA Yield</th>
<th>DNeasy Kit Extraction</th>
<th>Heat Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>45</td>
</tr>
<tr>
<td>20</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>30</td>
<td>40</td>
<td>55</td>
</tr>
</tbody>
</table>

Figure 1. Overall yield of extraction using only heat as compared to using the Qiagen DNeasy Kit. Heat method shows significantly higher yield.

Extraction Method Stability

<table>
<thead>
<tr>
<th>Copies per µL</th>
<th>0</th>
<th>1</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kit Extraction</td>
<td>30</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>Heat Extraction</td>
<td>25</td>
<td>35</td>
<td>50</td>
</tr>
</tbody>
</table>

Figure 2. Overall stability of the two extraction methods over the course of 11 weeks. No statistically significant difference between week 0 and week 11.

Discussion

• Heat method is a viable alternative to a kit extraction that has comparable yield and maintains long term stability
• Heat method allows for significantly higher throughput and time savings than kit extraction
• Impurities from environment seem to not have an effect on qPCR reactions and don’t cause DNA degradation

Acknowledgements and Funding

• Freshman Research Initiative (FRI)
• DIY Diagnostics Research Stream (Equipment and Reagents)
• Alexander Boley (Protocols)
• Winkler Family Foundation

• FRI Summer Research Fellowship (Pham and Abed)
• Texas Excellence in Jobs and Services Award (Pham)
• San Antonio Livestock Exposition-TIDES Research Fellowship (Pham)