People, place and purpose – Harnessing complexity to provide ecosystem services in urban environments via blue-green stormwater infrastructure

Dr Wade Hadwen¹ and Ben Penhallurick^{1,2}

¹ School of Environment and Science, Griffith University

² E2Design Lab

w.hadwen@griffith.edu.au

Urban stream complexity

Natural systems are complex

Engineered systems are simple(r)

Natural systems - streams

Ecosystem - A dynamic complex of living and nonliving components interacting as a functional unit.

> Maynard, S., James, D., & Davidson, A. (2010). The development of an Ecosystem Services Framework for South East Queensland. *Environ Manage*, *45*(5), 881-895.

Engineered systems – pipes and drains

Comparatively simple systems are easier to understand, monitor and manage

Where does blue-green infrastructure sit? What does it aim to achieve?

Blue-green stormwater infrastructure

Bioretention basins

Artificial wetlands

Blue-green infrastructure systems

The complexity of blue-green infrastructure makes these systems harder to understand and manage

Dynamic complexity

O Component — Interaction

Ambitions for blue-green infrastructure... are set (and limited) by legislation

Climatic Region	Design Objectives				
	Minimum reductions in mean annual load from unmitigated development (%)				
	Total Suspended Solids (TSS)	Total Phosphorus (TP)	Total Nitrogen (TN)	Gross Pollutants >5mm	
South East Queensland	80	60	45	90	

Queensland Government State Planning Policy

These are strong (and ambitious) receiving water quality targets... but can/should we do more/better?

Broadening our ambitions - An ecosystem services approach to stormwater management

Air quality, climate, water runoff, natural hazards, pollination

Food, fibre, biomass (fuel), freshwater, natural medicines

Regulating Cultural Provisioning services services services Benefits obtained Non-material Products obtained from regulation benefits obtained from ecosystems of ecosystem from ecosystems processes Supporting services Services necessary for the production of all other ecosystem services

Nutrient cycling, water cycling, soil formation, photosynthesis

First Nations values, ethical values, existence values, tourism / recreation

What ecosystem services do our stormwater systems seek to achieve?

Grey design objectives focus on flood mitigation, reducing risk to lives and livelihoods Blue-green design objectives focus on flood mitigation and removing coarse pollutants, sediment and nutrients to improve receiving water quality

Mapping current designed features of stormwater assets to ecosystem services

Urban stormwater systems	Ecosystem Services				
	Provisioning	Regulating	Supporting	Cultural	
Underground pipes and drains	Х	Water runoff, natural hazards	Х	X	
Hardened stream channel	Х	Water runoff, natural hazards	Photosynthesis*	X	
Bioretention basin	Improved freshwater quality*	Air quality, climate, water runoff, natural hazards, pollination	Nutrient cycling, water cycling, photosynthesis	X	
Artificial wetland	Improved freshwater quality*	Air quality, climate, water runoff, natural hazards, pollination	Nutrient cycling, water cycling, photosynthesis, soil formation	Existence values*	

Conclusions

- Natural stream ecosystems are complex and dynamic
- Historical approaches have reduced complexity and reduced the flow of ecosystem services
- Blue-green stormwater assets strongly resemble ecosystems, with detail and dynamic complexity

- Folding ecosystem services as the purpose into asset design and management requires an understanding of complexity and change, but can achieve incredible multiple benefits for people, places and planet
- To achieve this goal, adaptive management, which can cope with (and learn about) complexity, should be integrated into asset management Adaptive Asset Management

Context and options Mountainous

 \leq A CATALOGUE OF NATURE-BASED SOLUTIONS

FOR URBAN RESILIENCE

GFDRR WORLD BANK GROUP

https://www.felixx.nl/projects/nbs-catalogue.html